Loading…
Addition of carbon sources and nutrient salts can inhibit gangue acidification by changing microbial community structure
Acidic pollution from gangue oxidation has become a primary environmental problem in coal mining areas in China. The use of microorganisms to remediate acidic pollution in coal gangue piles has been indicated to be effective, but environmental differences and carbon sources in different mining areas...
Saved in:
Published in: | Environmental science and pollution research international 2022-12, Vol.29 (60), p.90046-90057 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Acidic pollution from gangue oxidation has become a primary environmental problem in coal mining areas in China. The use of microorganisms to remediate acidic pollution in coal gangue piles has been indicated to be effective, but environmental differences and carbon sources in different mining areas have become important factors restricting microbial activity. Instead of the addition of new functional bacteria to gangue piles, carbon sources and nutrient salts were added to recently discharged gangue to enhance the activity of beneficial bacteria in the indigenous microbial community. The changes in pH and electrical conductivity (EC) of the gangue leachate as well as the composition and abundance of the functional microbial community on the surface of the gangue were analyzed by leaching simulation experiments and 16S rRNA sequencing. The results showed that the addition of a carbon source maintained the pH of the gangue leachate at 6.31~6.65 in 14 d, which was significantly higher than that of the control group, but the pH of the leachate decreased significantly after the addition of the carbon source was stopped. The most effective treatment is adding a low concentration of nutrient salt (20% concentration) and sodium lactate (0.02 g/L) to the gangue first, and then adding sodium lactate (0.1 mg/L) every 7 days. The addition of carbon sources and nutrient salts changed the microbial community composition on the surface of the gangue, and the species diversity index decreased. The dominant genera in the experimental group were
Listeria
,
Arthrobacter
, and
Enterococcus
. The functional gene types in the experimental and control groups were almost the same, but their relative abundance changed. The abundance of functional genes related to the sulfur cycle increased substantially in the experimental group, and the abundance of genes involved in the nitrogen and carbon cycles also increased, albeit to different degrees. |
---|---|
ISSN: | 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-022-21726-5 |