Loading…
Weakly k-hyponormal and polynomially hyponormal commuting operator pairs
We introduce the notion of weak k-hyponormality and polynomial hyponormality for commuting operator pairs on a Hilbert space and investigate their relationship with k-hyponormality and subnormality.We provide examples of 2-variable weighted shifts which are weakly 1-hyponormal but not hyponormal.By...
Saved in:
Published in: | Science China. Mathematics 2015-02, Vol.58 (2), p.405-422 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We introduce the notion of weak k-hyponormality and polynomial hyponormality for commuting operator pairs on a Hilbert space and investigate their relationship with k-hyponormality and subnormality.We provide examples of 2-variable weighted shifts which are weakly 1-hyponormal but not hyponormal.By relating the weak k-hyponormality and k-hyponormality of a commuting operator pair to positivity of restriction of some linear functionals to corresponding cones of functions,we prove that there is an operator pair that is polynomially hyponormal but not 2-hyponormal,generalizing Curto and Putinar’s result(1991,1993)to the two-variable case. |
---|---|
ISSN: | 1674-7283 1869-1862 |
DOI: | 10.1007/s11425-014-4916-x |