Loading…
Self-adaptive learning based immune algorithm
A self-adaptive learning based immune algorithm (SALIA) is proposed to tackle diverse optimization problems, such as complex multi-modal and ill-conditioned problems with the high robustness. The SALIA algorithm adopted a mutation strategy pool which consists of four effective mutation strategies to...
Saved in:
Published in: | Journal of Central South University 2012-04, Vol.19 (4), p.1021-1031 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c350t-7cd0fc5b5620683802eb2a33ccdf2777a7655d8b0a5e4646b22b5910f2caffb53 |
---|---|
cites | cdi_FETCH-LOGICAL-c350t-7cd0fc5b5620683802eb2a33ccdf2777a7655d8b0a5e4646b22b5910f2caffb53 |
container_end_page | 1031 |
container_issue | 4 |
container_start_page | 1021 |
container_title | Journal of Central South University |
container_volume | 19 |
creator | Xu, Bin Zhuang, Yi Xue, Yu Wang, Zhou |
description | A self-adaptive learning based immune algorithm (SALIA) is proposed to tackle diverse optimization problems, such as complex multi-modal and ill-conditioned problems with the high robustness. The SALIA algorithm adopted a mutation strategy pool which consists of four effective mutation strategies to generate new antibodies. A self-adaptive learning framework is implemented to select the mutation strategies by learning from their previous performances in generating promising solutions. Twenty-six state-of-the-art optimization problems with different characteristics, such as uni-modality, multi-modality, rotation, ill-condition, mis-scale and noise, are used to verify the validity of SALIA. Experimental results show that the novel algorithm SALIA achieves a higher universality and robustness than clonal selection algorithms (CLONALG), and the mean error index of each test function in SALIA decreases by a factor of at least 1.0×10
7
in average. |
doi_str_mv | 10.1007/s11771-012-1105-3 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11771_012_1105_3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s11771_012_1105_3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-7cd0fc5b5620683802eb2a33ccdf2777a7655d8b0a5e4646b22b5910f2caffb53</originalsourceid><addsrcrecordid>eNp9j8tOwzAQRS0EElXpB7DLDxhmxrWdLFHFS6rEAlhbtmOHoDwqO0Xi70kV1l3NXcy5uoexW4Q7BND3GVFr5IDEEUFyccFWRKS5JBKXc4ZKciqr6pptcm4dCCQlVKVWjL-HLnJb28PU_oSiCzYN7dAUzuZQF23fH4dQ2K4ZUzt99TfsKtouh83_XbPPp8eP3Qvfvz2_7h723AsJE9e-huilk4pAlaIECo6sEN7XkbTWVisp69KBlWGrtsoROVkhRPI2RifFmuHS69OYcwrRHFLb2_RrEMxJ2SzKZlY2J2UjZoYWJs-_QxOS-R6PaZhnnoH-AFXhWHo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Self-adaptive learning based immune algorithm</title><source>Springer Nature</source><creator>Xu, Bin ; Zhuang, Yi ; Xue, Yu ; Wang, Zhou</creator><creatorcontrib>Xu, Bin ; Zhuang, Yi ; Xue, Yu ; Wang, Zhou</creatorcontrib><description>A self-adaptive learning based immune algorithm (SALIA) is proposed to tackle diverse optimization problems, such as complex multi-modal and ill-conditioned problems with the high robustness. The SALIA algorithm adopted a mutation strategy pool which consists of four effective mutation strategies to generate new antibodies. A self-adaptive learning framework is implemented to select the mutation strategies by learning from their previous performances in generating promising solutions. Twenty-six state-of-the-art optimization problems with different characteristics, such as uni-modality, multi-modality, rotation, ill-condition, mis-scale and noise, are used to verify the validity of SALIA. Experimental results show that the novel algorithm SALIA achieves a higher universality and robustness than clonal selection algorithms (CLONALG), and the mean error index of each test function in SALIA decreases by a factor of at least 1.0×10
7
in average.</description><identifier>ISSN: 2095-2899</identifier><identifier>EISSN: 2227-5223</identifier><identifier>DOI: 10.1007/s11771-012-1105-3</identifier><language>eng</language><publisher>Heidelberg: Central South University</publisher><subject>Engineering ; Metallic Materials</subject><ispartof>Journal of Central South University, 2012-04, Vol.19 (4), p.1021-1031</ispartof><rights>Central South University Press and Springer-Verlag Berlin Heidelberg 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-7cd0fc5b5620683802eb2a33ccdf2777a7655d8b0a5e4646b22b5910f2caffb53</citedby><cites>FETCH-LOGICAL-c350t-7cd0fc5b5620683802eb2a33ccdf2777a7655d8b0a5e4646b22b5910f2caffb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Bin</creatorcontrib><creatorcontrib>Zhuang, Yi</creatorcontrib><creatorcontrib>Xue, Yu</creatorcontrib><creatorcontrib>Wang, Zhou</creatorcontrib><title>Self-adaptive learning based immune algorithm</title><title>Journal of Central South University</title><addtitle>J. Cent. South Univ. Technol</addtitle><description>A self-adaptive learning based immune algorithm (SALIA) is proposed to tackle diverse optimization problems, such as complex multi-modal and ill-conditioned problems with the high robustness. The SALIA algorithm adopted a mutation strategy pool which consists of four effective mutation strategies to generate new antibodies. A self-adaptive learning framework is implemented to select the mutation strategies by learning from their previous performances in generating promising solutions. Twenty-six state-of-the-art optimization problems with different characteristics, such as uni-modality, multi-modality, rotation, ill-condition, mis-scale and noise, are used to verify the validity of SALIA. Experimental results show that the novel algorithm SALIA achieves a higher universality and robustness than clonal selection algorithms (CLONALG), and the mean error index of each test function in SALIA decreases by a factor of at least 1.0×10
7
in average.</description><subject>Engineering</subject><subject>Metallic Materials</subject><issn>2095-2899</issn><issn>2227-5223</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9j8tOwzAQRS0EElXpB7DLDxhmxrWdLFHFS6rEAlhbtmOHoDwqO0Xi70kV1l3NXcy5uoexW4Q7BND3GVFr5IDEEUFyccFWRKS5JBKXc4ZKciqr6pptcm4dCCQlVKVWjL-HLnJb28PU_oSiCzYN7dAUzuZQF23fH4dQ2K4ZUzt99TfsKtouh83_XbPPp8eP3Qvfvz2_7h723AsJE9e-huilk4pAlaIECo6sEN7XkbTWVisp69KBlWGrtsoROVkhRPI2RifFmuHS69OYcwrRHFLb2_RrEMxJ2SzKZlY2J2UjZoYWJs-_QxOS-R6PaZhnnoH-AFXhWHo</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Xu, Bin</creator><creator>Zhuang, Yi</creator><creator>Xue, Yu</creator><creator>Wang, Zhou</creator><general>Central South University</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120401</creationdate><title>Self-adaptive learning based immune algorithm</title><author>Xu, Bin ; Zhuang, Yi ; Xue, Yu ; Wang, Zhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-7cd0fc5b5620683802eb2a33ccdf2777a7655d8b0a5e4646b22b5910f2caffb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Engineering</topic><topic>Metallic Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Bin</creatorcontrib><creatorcontrib>Zhuang, Yi</creatorcontrib><creatorcontrib>Xue, Yu</creatorcontrib><creatorcontrib>Wang, Zhou</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Central South University</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Bin</au><au>Zhuang, Yi</au><au>Xue, Yu</au><au>Wang, Zhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-adaptive learning based immune algorithm</atitle><jtitle>Journal of Central South University</jtitle><stitle>J. Cent. South Univ. Technol</stitle><date>2012-04-01</date><risdate>2012</risdate><volume>19</volume><issue>4</issue><spage>1021</spage><epage>1031</epage><pages>1021-1031</pages><issn>2095-2899</issn><eissn>2227-5223</eissn><abstract>A self-adaptive learning based immune algorithm (SALIA) is proposed to tackle diverse optimization problems, such as complex multi-modal and ill-conditioned problems with the high robustness. The SALIA algorithm adopted a mutation strategy pool which consists of four effective mutation strategies to generate new antibodies. A self-adaptive learning framework is implemented to select the mutation strategies by learning from their previous performances in generating promising solutions. Twenty-six state-of-the-art optimization problems with different characteristics, such as uni-modality, multi-modality, rotation, ill-condition, mis-scale and noise, are used to verify the validity of SALIA. Experimental results show that the novel algorithm SALIA achieves a higher universality and robustness than clonal selection algorithms (CLONALG), and the mean error index of each test function in SALIA decreases by a factor of at least 1.0×10
7
in average.</abstract><cop>Heidelberg</cop><pub>Central South University</pub><doi>10.1007/s11771-012-1105-3</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-2899 |
ispartof | Journal of Central South University, 2012-04, Vol.19 (4), p.1021-1031 |
issn | 2095-2899 2227-5223 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s11771_012_1105_3 |
source | Springer Nature |
subjects | Engineering Metallic Materials |
title | Self-adaptive learning based immune algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A07%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-adaptive%20learning%20based%20immune%20algorithm&rft.jtitle=Journal%20of%20Central%20South%20University&rft.au=Xu,%20Bin&rft.date=2012-04-01&rft.volume=19&rft.issue=4&rft.spage=1021&rft.epage=1031&rft.pages=1021-1031&rft.issn=2095-2899&rft.eissn=2227-5223&rft_id=info:doi/10.1007/s11771-012-1105-3&rft_dat=%3Ccrossref_sprin%3E10_1007_s11771_012_1105_3%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-7cd0fc5b5620683802eb2a33ccdf2777a7655d8b0a5e4646b22b5910f2caffb53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |