Loading…

Approximate eigensolutions of Dirac equation for the superposition Hellmann potential under spin and pseudospin symmetries

The Hellmann potential is simply a superposition of an attractive Coulomb potential − a / r plus a Yukawa potential b e − δ r / r . The generalized parametric Nikiforov–Uvarov (NU) method is used to examine the approximate analytical energy eigenvalues and two-component wave function of the Dirac eq...

Full description

Saved in:
Bibliographic Details
Published in:Pramāṇa 2014-07, Vol.83 (1), p.49-61
Main Authors: HAMZAVI, M, IKHDAIR, S M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Hellmann potential is simply a superposition of an attractive Coulomb potential − a / r plus a Yukawa potential b e − δ r / r . The generalized parametric Nikiforov–Uvarov (NU) method is used to examine the approximate analytical energy eigenvalues and two-component wave function of the Dirac equation with the Hellmann potential for arbitrary spin-orbit quantum number κ in the presence of exact spin and pseudospin (p-spin) symmetries. As a particular case, we obtain the energy eigenvalues of the pure Coulomb potential in the non-relativistic limit.
ISSN:0304-4289
0973-7111
DOI:10.1007/s12043-014-0764-z