Loading…
Re-proving a result of Veksler and Geiler
Veksler and Geiler (Sibirsk Mat Z 13:43–51, 1972 ) proved that any Archimedean Riesz space is Dedekind complete if and only if it is boundedly laterally complete and uniformly complete. We give a direct proof of this result, following Bernau’s (J Lond Math Soc (2) 12(3):320–322, 1975/1976 ) paper....
Saved in:
Published in: | Rendiconti del Circolo matematico di Palermo 2013-12, Vol.62 (3), p.363-366 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Veksler and Geiler (Sibirsk Mat Z 13:43–51,
1972
) proved that any Archimedean Riesz space is Dedekind complete if and only if it is boundedly laterally complete and uniformly complete. We give a direct proof of this result, following Bernau’s (J Lond Math Soc (2) 12(3):320–322,
1975/1976
) paper. |
---|---|
ISSN: | 0009-725X 1973-4409 |
DOI: | 10.1007/s12215-013-0129-3 |