Loading…

Re-proving a result of Veksler and Geiler

Veksler and Geiler (Sibirsk Mat Z 13:43–51, 1972 ) proved that any Archimedean Riesz space is Dedekind complete if and only if it is boundedly laterally complete and uniformly complete. We give a direct proof of this result, following Bernau’s (J Lond Math Soc (2) 12(3):320–322, 1975/1976 ) paper....

Full description

Saved in:
Bibliographic Details
Published in:Rendiconti del Circolo matematico di Palermo 2013-12, Vol.62 (3), p.363-366
Main Author: Ercan, Z.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Veksler and Geiler (Sibirsk Mat Z 13:43–51, 1972 ) proved that any Archimedean Riesz space is Dedekind complete if and only if it is boundedly laterally complete and uniformly complete. We give a direct proof of this result, following Bernau’s (J Lond Math Soc (2) 12(3):320–322, 1975/1976 ) paper.
ISSN:0009-725X
1973-4409
DOI:10.1007/s12215-013-0129-3