Loading…
Erklärbare Künstliche Intelligenz in der Pathologie
Zusammenfassung Mit den Entwicklungen der Präzisionsmedizin steigen die Anforderungen an die pathologische Diagnostik, histomorphologische und molekularpathologische Daten standardisiert, quantitativ und integriert zu beurteilen. Große Hoffnungen werden in Verfahren der Künstlichen Intelligenz (KI)...
Saved in:
Published in: | Forum (Heidelberg) 2024-09, Vol.39 (4), p.269-276 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | ger |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Zusammenfassung
Mit den Entwicklungen der Präzisionsmedizin steigen die Anforderungen an die pathologische Diagnostik, histomorphologische und molekularpathologische Daten standardisiert, quantitativ und integriert zu beurteilen. Große Hoffnungen werden in Verfahren der Künstlichen Intelligenz (KI) gesetzt, die gezeigt haben, komplexe klinische, histologische und molekulare Daten zur Krankheitsklassifikation, Biomarkerquantifizierung und Prognoseabschätzung auswerten zu können. Diese Arbeit gibt einen Überblick über neueste Entwicklungen der KI in der Pathologie, diskutiert die Grenzen insbesondere hinsichtlich der Intransparenz der KI und beschreibt Lösungen, die Entscheidungsprozesse mit Verfahren der sog. erklärbaren KI („explainable AI“, XAI) transparenter zu gestalten. |
---|---|
ISSN: | 0947-0255 2190-9784 |
DOI: | 10.1007/s12312-024-01337-6 |