Loading…
Discrete-time Kalman filter for Takagi–Sugeno fuzzy models
In this work, the Kalman Filter (KF) and Takagi–Sugeno fuzzy modeling technique are combined to extend the classical Kalman linear state estimation to the nonlinear field. The framework for such extension is given, and in this sense the discrete-time fuzzy Kalman filter (DFKF) is obtained. It will b...
Saved in:
Published in: | Evolving systems 2017-09, Vol.8 (3), p.211-219 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, the Kalman Filter (KF) and Takagi–Sugeno fuzzy modeling technique are combined to extend the classical Kalman linear state estimation to the nonlinear field. The framework for such extension is given, and in this sense the discrete-time fuzzy Kalman filter (DFKF) is obtained. It will be shown that the fuzzy version gives some advantages when is compared with the Extended Kalman Filter (EKF), which is the most typical extension of the KF to the nonlinear field. The proposed approach provides a significantly smaller processing time than the processing time of the EKF while the mean square error is also reduced. Finally, some examples, such as the Lorenz chaotic attractor and under actuated mechatronic system (pendubot), are used to compare the DFKF and EKF. |
---|---|
ISSN: | 1868-6478 1868-6486 |
DOI: | 10.1007/s12530-017-9181-0 |