Loading…

Manufacturing of inchworm robot using shape memory alloy (SMA) embedded composite structure

To design effective movement of robots, various locomotive mechanisms have been investigated. In this study, an inchworm robot was manufactured using shape memory alloy (SMA) which was embedded in composite materials. A Ni-Ti SMA wire was pre-strained and embedded in the glass fiber reinforced polym...

Full description

Saved in:
Bibliographic Details
Published in:International journal of precision engineering and manufacturing 2011-06, Vol.12 (3), p.565-568
Main Authors: Kim, Min-Saeng, Chu, Won-Shik, Lee, Jae-Hoon, Kim, Yun-Mi, Ahn, Sung-Hoon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To design effective movement of robots, various locomotive mechanisms have been investigated. In this study, an inchworm robot was manufactured using shape memory alloy (SMA) which was embedded in composite materials. A Ni-Ti SMA wire was pre-strained and embedded in the glass fiber reinforced polymer (GFRP) strip laid on an ∩-shape mold. Then SMA embedded composite structure was cured at room temperature for 72 hours. Controlling DC current through the SMA wire, the SMA-composite structure, body, could be actuated by changing the radius of curvature. Two legs were attached to the end of body and the leg has two edges which have different coefficients of friction to provide directional movement. One stroke of inchworm provided 4.0 mm translational movement. Repeating on and off of DC current, the inchworm robot gives continuous movement. This mechanism can be applied to the soft morphing robotics, bio medical devices, airplane inlet, etc. instead of using traditional components for their movement.
ISSN:2234-7593
2005-4602
DOI:10.1007/s12541-011-0071-2