Loading…

Pressure pulsations enhance penetration index in COPD

This study was done in order to evaluate the effect of a novel pressure pulsation device (Pulsehaler™, Respinova Ltd., Israel) on the deposition pattern of inhaled aerosol in the lungs of COPD patients. Fifteen COPD patients were recruited to undergo spirometry and SPECT-CT lung scan following nebul...

Full description

Saved in:
Bibliographic Details
Published in:Drug delivery and translational research 2022-06, Vol.12 (6), p.1466-1474
Main Authors: Gavriely, Noam, Volkov, Olga, Fink, Gershon, Shpirer, Isaac, Golan, Haim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study was done in order to evaluate the effect of a novel pressure pulsation device (Pulsehaler™, Respinova Ltd., Israel) on the deposition pattern of inhaled aerosol in the lungs of COPD patients. Fifteen COPD patients were recruited to undergo spirometry and SPECT-CT lung scan following nebulization of radioactively labeled albuterol in saline solution with a jet nebulizer (“NEB”) and with a combined Pulsehaler™/jet nebulizer (“PH + NEB”) treatment. Central and peripheral segments of the coronal and transverse SPECT scans were evaluated for total counts and for the ratios between peripheral counts and central counts (penetration Index, “PI”). There was a significant improvement in FEV 1 from before to after albuterol treatment in the PH + NEB group (151 ml ± 187, p  NEB, p = 0.0176), FEF 75 (PH + NEB > NEB, p = 0.0028), but not for the other spirometry measures. Borg scores also were improved significantly improved in PH + NEB vs NEB (p = 0.0006). Total lung deposition and total body deposition were lower in the PH + NEB treatments vs the NEB treatments. However, PI values were 3.08 ± 0.67 times greater on average with the PH + NEB (p = 0.026) as compared to NEB only. The magnitude of the increased penetration index observed in this study indicates that pressure pulsations should be further explored as means to improve drug delivery into the distal small airways of the bronchial tree. Effects of the pressure pulsations on small airway patency could be the mechanism by which the effect was achieved. Graphical abstract
ISSN:2190-393X
2190-3948
DOI:10.1007/s13346-021-01027-z