Loading…
Comparative Analysis of Hybrid and Active Cooling Systems for Concentrated Photovoltaic Panels Using a 1-D Mathematical Model: A Distinctive Perspective
An essential factor influencing photovoltaic (PV) panel performance is its operating temperature. Various active and passive cooling methods have been explored in the literature to mitigate the effects of high operating temperatures; however, recent research has shown a growing interest in hybrid co...
Saved in:
Published in: | Arabian journal for science and engineering (2011) 2024-08 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An essential factor influencing photovoltaic (PV) panel performance is its operating temperature. Various active and passive cooling methods have been explored in the literature to mitigate the effects of high operating temperatures; however, recent research has shown a growing interest in hybrid cooling systems that combine both active and passive approaches. In this context, phase change material (PCM) serves as a passive cooling method, while fluid is employed as an active cooling medium. This study introduces a channel into the PV panel base through which fluid flows. Additionally, a PCM layer is placed at the bottom of the water channel to reduce the average temperature of the fluid, thus extracting more heat compared to direct contact with the PV panel. The proposed model is compared with traditional water-cooled PV panels using a parametric approach, with varying parameters including concentration ratio, environmental temperature, wind speed, mass flow rate of water in the channel, and inlet temperature. The study findings reveal that the proposed model leads to an increase in electricity production within the range of 1.4–7 kW, an improvement in PV efficiency between 1.6 and 3.8%. |
---|---|
ISSN: | 2193-567X 2191-4281 |
DOI: | 10.1007/s13369-024-09343-5 |