Loading…
Electro-cementation of calcareous sand using colloidal silica (CS) nanoparticles and alumina powder
The research investigates the effectiveness of a ground improvement technique that involves the electro-cementation of an onshore calcareous sand containing 95.3% calcium carbonate through a series of laboratory experiments. Colloidal silica (CS) nanoparticles and alumina powder were introduced as p...
Saved in:
Published in: | Innovative infrastructure solutions : the official journal of the Soil-Structure Interaction Group in Egypt (SSIGE) 2023-12, Vol.8 (12), Article 318 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The research investigates the effectiveness of a ground improvement technique that involves the electro-cementation of an onshore calcareous sand containing 95.3% calcium carbonate through a series of laboratory experiments. Colloidal silica (CS) nanoparticles and alumina powder were introduced as pozzolanic materials in the sand, and a direct current (DC) was passed through the sand-silica-alumina mix inside an electrokinetic (EK) cell. The method resulted in the electro-cementation of the calcareous sand through the formation of calcium silicate hydrates (C–S–Hs) and calcium aluminate hydrates (C–A–Hs) as products of the pozzolanic reactions between Ca(OH)
2
, SiO
2
and Al
2
O
3
after electrolysis occurred. Iron-rich cements were also formed by the degradation of anodes. These newly formed compounds changed the nature of the treated soil from a granular material into a rock. Results show that the compressive strength of the resulting rock formation is significantly improved. The treatment can be considered as an artificial lithification process through which the nature of the treated soil was changed from a granular material into a rock formation. The electro-cementation achieved by the treatment was further assessed by spectroscopic analyses including FE-SEM, EDX and XRD, which confirmed the formation of cementing agents within the structure of the treated sand. Potential applications of the technique include caissons, highway construction projects, dune fixation and erosion control, in addition to liquefaction mitigation due to electrolysis of pore water and plugging the pores with cementitious materials. |
---|---|
ISSN: | 2364-4176 2364-4184 |
DOI: | 10.1007/s41062-023-01276-6 |