Loading…
CFD simulations targeting the performance of the NTNU BT1 wind turbine using overset grids
In the present study, the performance of the NTNU Blind Test 1 wind turbine is analyzed in the computational fluid dynamics (CFD) simulations by using the CFD code FANS with structured overset grids. First, the numerical methods including the governing equations, the turbulence closure model, and th...
Saved in:
Published in: | Journal of hydrodynamics. Series B 2023-10, Vol.35 (5), p.954-962 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the present study, the performance of the NTNU Blind Test 1 wind turbine is analyzed in the computational fluid dynamics (CFD) simulations by using the CFD code FANS with structured overset grids. First, the numerical methods including the governing equations, the turbulence closure model, and the flow solver are introduced. In addition, the NTNU BT1 wind tunnel experiment is described. Then, structured overset grid blocks are generated in the computational domain with fully resolved wind turbine geometry, including the blades, hub, nacelle, and tower. Afterward, unsteady Reynolds averaged Navier-Stokes (RANS) simulations with the two-layer
k - ε
turbulence model are performed with an inlet velocity of 10 m/s and a tip-speed ratio (TSR) of 6. The overset-grid capability of FANS is leveraged to handle the rotation of the rotor. Finally, simulations are performed for a range of TSRs and a comparison is made among the present CFD results, other numerical results obtained from representative methods, and the experimental data. It is observed that the CFD-predicted thrust coefficients match the experimental measurement at low TSRs while under-predicting the values at high TSRs, and potential reasons for this deviation are discussed. |
---|---|
ISSN: | 1001-6058 1878-0342 |
DOI: | 10.1007/s42241-023-0065-4 |