Loading…

Normalized solutions for a class of nonlinear Choquard equations

We prove the existence of a least energy solution to the problem - Δ u - ( I α ∗ F ( u ) ) f ( u ) = λ u in R N , ∫ R N u 2 ( x ) d x = a 2 , where N ≥ 1 , α ∈ ( 0 , N ) , F ( s ) : = ∫ 0 s f ( t ) d t , and I α : R N → R is the Riesz potential. If f is odd in u then we prove the existence of infini...

Full description

Saved in:
Bibliographic Details
Published in:SN partial differential equations and applications 2020-10, Vol.1 (5), Article 34
Main Authors: Bartsch, Thomas, Liu, Yanyan, Liu, Zhaoli
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We prove the existence of a least energy solution to the problem - Δ u - ( I α ∗ F ( u ) ) f ( u ) = λ u in R N , ∫ R N u 2 ( x ) d x = a 2 , where N ≥ 1 , α ∈ ( 0 , N ) , F ( s ) : = ∫ 0 s f ( t ) d t , and I α : R N → R is the Riesz potential. If f is odd in u then we prove the existence of infinitely many normalized solutions.
ISSN:2662-2963
2662-2971
DOI:10.1007/s42985-020-00036-w