Loading…
A non-trivial solution for a p-Schrödinger–Kirchhoff-type integro-differential system by non-smooth techniques
We consider the integro-differential system ( P m ) : - a k + b k ∫ R N | ∇ u k | p d x p - 1 Δ p u k + V ( x ) | u k | p - 2 u k = ∂ k F ( u 1 , … , u m ) , where x ∈ R N , a k > 0 , b k ≥ 0 , N ≥ 2 and 1 < p < N , u k ∈ W 1 , p ( R N ) , for k = 1 , … , m . By ∂ k F ( u 1 , … , u m ) , it...
Saved in:
Published in: | Annals of functional analysis 2023-10, Vol.14 (4), Article 77 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the integro-differential system
(
P
m
)
:
-
a
k
+
b
k
∫
R
N
|
∇
u
k
|
p
d
x
p
-
1
Δ
p
u
k
+
V
(
x
)
|
u
k
|
p
-
2
u
k
=
∂
k
F
(
u
1
,
…
,
u
m
)
,
where
x
∈
R
N
,
a
k
>
0
,
b
k
≥
0
,
N
≥
2
and
1
<
p
<
N
,
u
k
∈
W
1
,
p
(
R
N
)
, for
k
=
1
,
…
,
m
. By
∂
k
F
(
u
1
,
…
,
u
m
)
,
it is denoted the
k
-th partial generalized gradient in the sense of Clarke. The potential
V
∈
C
R
N
verifies
inf
(
V
)
>
0
and a coercivity property introduced by Bartsch et al. The coupling function
F
:
R
m
⟶
R
is locally Lipschitz and verifies conditions introduced by Duan and Huang. By applying tools from the non-smooth critical point theory, we prove the existence of a non-trivial mountain pass solution of
(
P
m
)
. |
---|---|
ISSN: | 2639-7390 2008-8752 |
DOI: | 10.1007/s43034-023-00299-5 |