Loading…
Composition operators with closed range on the Dirichlet space
It is well known that the composition operator on Hardy or Bergman space has a closed range if and only if its Nevanlinna counting function induces a reverse Carleson measure. Similar conclusion is not available on the Dirichlet space. Specifically, the reverse Carleson measure is not enough to ensu...
Saved in:
Published in: | Banach journal of mathematical analysis 2024-04, Vol.18 (2), Article 27 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It is well known that the composition operator on Hardy or Bergman space has a closed range if and only if its Nevanlinna counting function induces a reverse Carleson measure. Similar conclusion is not available on the Dirichlet space. Specifically, the reverse Carleson measure is not enough to ensure that the range of the corresponding composition operator is closed. However, under certain assumptions, we in this paper set the necessary and sufficient condition for a composition operator on the Dirichlet space to have closed range. |
---|---|
ISSN: | 2662-2033 1735-8787 |
DOI: | 10.1007/s43037-024-00334-0 |