Loading…

Stored energy and recrystallization temperature of rolled copper and silver single crystals with defined solute contents

The heat of recrystallization and the recrystallization temperature was determined using an annealing calorimeter for a range of oriented copper and silver single crystals doped with various solute elements and which had been rolled by 98%. In every case only one peak of energy release was observed....

Full description

Saved in:
Bibliographic Details
Published in:Acta metallurgica 1979-01, Vol.27 (9), p.1539-1548
Main Authors: Haessner, Frank, Hoschek, Günter, Tölg, Günther
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The heat of recrystallization and the recrystallization temperature was determined using an annealing calorimeter for a range of oriented copper and silver single crystals doped with various solute elements and which had been rolled by 98%. In every case only one peak of energy release was observed. The corresponding ‘heat’ is termed ‘stored energy’. In the case of the pure metals the values of stored energy and recrystallization temperature depend on the initial orientation of the single crystals. The stored energy is higher for silver than for copper on the other hand the influence of orientation is less. The following elements when present in small quantities reduce the stored energy and raise the recrystallization temperature compared with the pure metals copper (and silver): Ag, Al, Au, Bi, Cd, Ge, Mn, Pb, Pd, Sb, Si, Sn (Al, Cu, Sb, Sn). The following elements cause the opposite effect: Co, Fe, Ni, Pt. Ti, Zr (Au, Mn, Pd). The sense of the effect can be reversed at higher concentrations. The different behaviour of the solute atoms of the two groups can be correlated with the distribution coefficients k in the relevant matrix metal. Solute atoms with a k < 1 ( or > 1) lower (raise) the stored energy and raise (decrease) the recrystallization temperature compared with the values for the base metals. Nous avons déterminé à l'aide d'un calorimètre la chaleur et la température de recristallisation de monocristaux de cuivre et d'argent de diverses orientations, dopés avec divers solutés et laminés à 98%. Dans tous les cas, nous n'avons observé qu'un pic de dégagement d'énergie. La quantité de ‘chaleur’ correspondante est appelée “énergie emmagasinée”. Dans le cas des métaux purs, les valeurs de l'énergie emmagasinée et de la température de recristallisation dépendent de l'orientation initiale des monocristaux. L'énergie emmagasinée est plus grande dans le cas de l'argent que dans le cas du cuivre; par contre, l'influence de l'orientation est moindre. Voici les éléments qui, présents en faible quantité, diminuent l'énergie emmagasinée et augmentent la température de recristallisation, par rapport au cuivre (et à l'argent) pur: Ag, Al, Au, Bi, Cd, Ge. Mn, Pb Pd, Sb, Si, Sn (Al, Cu, Sb, Sn). Les éléments suivants produisent l'effet inverse: Co, Fe, Ni, Pt. Ti. Zr (Au, Mn, Pd). Le sens de cet effet peut s'inverser aux fortes concentrations. On peut corréler le comportement différent des atomes de soluté des deux groupes avec les coefficients de répartition k d
ISSN:0001-6160
DOI:10.1016/0001-6160(79)90176-7