Loading…

On the Wigner distribution function for an oscillator

We present two new derivations of the Wigner distribution function for a simple harmonic oscillator Hamiltonian. Both methods are facilitated using a formula which expresses the Wigner function as a simple trace. The first method of derivation then utilizes a modification of a theorem due to Messiah...

Full description

Saved in:
Bibliographic Details
Published in:Annals of physics 1975-01, Vol.89 (2), p.261-273
Main Authors: Davies, R.W, Davies, K.T.R
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present two new derivations of the Wigner distribution function for a simple harmonic oscillator Hamiltonian. Both methods are facilitated using a formula which expresses the Wigner function as a simple trace. The first method of derivation then utilizes a modification of a theorem due to Messiah. An alternative procedure makes use of the coherent state representation of an oscillator. The Wigner distribution function gives a semiclassical joint probability for finding the system with given coordinates and momenta, and the joint probability is factorable for the special case of an oscillator. An important application of this result occurs in the theory of nuclear fission for calculating the probability distributions for the masses, kinetic energies, and vibrational energies of the fission fragments at infinite separation.
ISSN:0003-4916
1096-035X
DOI:10.1016/0003-4916(75)90182-7