Loading…
Generating strings for bipartite Steinhaus graphs
Let b( n) be the number of bipartite Steinhaus graphs with n vertices. We show that b( n) satisfies the recurrence, b(2) = 2, b(3) = 4, and for k ⩾ 2, b(2 k + 1) = 2 b( k + 1) + 1, b(2 k) = b( k) + b( k + 1). Thus b(n) ⩽ 5 2 n − 7 2 with equality when n is one more than a power of two. To prove this...
Saved in:
Published in: | Discrete mathematics 1995-06, Vol.141 (1), p.95-107 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let
b(
n) be the number of bipartite Steinhaus graphs with
n vertices. We show that
b(
n) satisfies the recurrence,
b(2) = 2,
b(3) = 4, and for
k ⩾ 2,
b(2
k + 1) = 2
b(
k + 1) + 1,
b(2
k) =
b(
k) +
b(
k + 1). Thus
b(n) ⩽
5
2
n −
7
2
with equality when
n is one more than a power of two. To prove this recurrence, we describe the possible generating strings for these bipartite graphs. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/0012-365X(93)E0211-L |