Loading…
The averaged face growth rates of lysozyme crystals: the effect of temperature
Measurements of the averaged or macroscopic face growth rates of lysozyme crystals are reported here for the (110) face of tetragonal lysozyme, at three sets of pH and salt concentrations, with temperatures over a 4–22°C range for several protein concentrations. The growth rate trends with supersatu...
Saved in:
Published in: | Journal of crystal growth 1995-05, Vol.151 (1), p.163-172 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Measurements of the averaged or macroscopic face growth rates of lysozyme crystals are reported here for the (110) face of tetragonal lysozyme, at three sets of pH and salt concentrations, with temperatures over a 4–22°C range for several protein concentrations. The growth rate trends with supersaturation were similar to previous microscopic growth rate measurements. However, it was found that at high supersaturations the growth rates attain a maximum and then start decreasing. No “dead zone” was observed but the growth rates were found to approach zero asymptotically at very low supersaturations. The growth rate data also displayed a dependence on pH and salt concentration which could not be characterized solely by the supersaturation. A complete mechanism for lysozyme crystal growth, involving the formation of an aggregate growth unit, mass transport of the growth unit to the crystal interface and faceted crystal growth by growth unit addition, is suggested. Such a mechanism may provide a more consistent explanation for the observed growth rate trends than those suggested by other investigators. The nutrient solution interactions leading to the formation of the aggregate growth unit may, thus, be as important as those occurring at the crystal interface and may account for the differences between small molecule and protein crystal growth. |
---|---|
ISSN: | 0022-0248 1873-5002 |
DOI: | 10.1016/0022-0248(95)00036-4 |