Loading…
Electrocatalytic properties of Pt(111), Pt(332), Pt(331) and Pt(110) single crystal electrodes towards ethylene glycol oxidation in sulphuric acid solutions
In the present paper four platinum single crystal electrodes, two basal planes of Pt(111) and Pt(110) and two stepped surfaces of Pt(332) and Pt(331), were prepared and used in the study of electro-oxidation of ethylene glycol (EG). All of these Pt single crystal electrodes belong to the [1 1 0] zon...
Saved in:
Published in: | Journal of electroanalytical chemistry (Lausanne, Switzerland) Switzerland), 1992-11, Vol.340 (1), p.213-226 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the present paper four platinum single crystal electrodes, two basal planes of Pt(111) and Pt(110) and two stepped surfaces of Pt(332) and Pt(331), were prepared and used in the study of electro-oxidation of ethylene glycol (EG). All of these Pt single crystal electrodes belong to the [1
1
0] zone of crystallography, and exhibit on their surface (111) symmetry sites or certain combinations of terraces of (111) symmetry with steps of (111) symmetry type. It has been found that as a result of a favourable steric matching of surface sites the Pt(110) electrode manifested a higher activity both for EG dissociative adsorption and oxidation than that of the Pt(111) electrode. The stepped surfaces of Pt(332) and Pt(331) operated with certain combinations of characteristics of Pt(111) and Pt(110). The best electrocatalytic properties have been obtained with a Pt(331) electrode, and this is attributed both to the configuration of the atomic arrangement and to the stability of this surface.
In summary, the above results show that the performance of a given Pt single crystal electrode in EG oxidation at a potential below 1.0 V may be evaluated by three factors.
1.
(1) The ability to resist self-poisoning (AB) which describes the difficulty of EG dissociative adsorption on the electrode surface.
2.
(2) The activity for EG oxidation (AC). In considering that the threshold potential for EG oxidation on all electrodes is at 0.3 V and that the self-poisoning is encountered in PGPS, the activity for EG oxidation may be reasonably characterized by the intensity of the peak current acquired in NGPS near 0.6 V, which corresponds to the maximum current of EG oxidation on an activated (non-poisoned) surface of the electrode.
3.
(3) The stability of activity during potential cycling (SA) between 0.05 and 1.0 V, which describes the resistance to the decrease of intensity of the EG oxidation current during voltammetric cycling.
For the two basal planes studied, the AB and SA of Pt(111) are higher than those of Pt(110), but its AC is much lower than that of Pt(110). These differences are clearly related to the surface atomic arrangement of the two electrodes. As has been discussed above, the surface of Pt(111) is atomically smooth and stable during voltammetric cycling. The surface of Pt(110) presents, however, atomic steps and is reconstructed under experimental conditions, i.e. certain steric configurations are encountered on the Pt(110) surface. The high AC and the low AB may |
---|---|
ISSN: | 1572-6657 0022-0728 1873-2569 |
DOI: | 10.1016/0022-0728(92)80299-J |