Loading…
Conformational analysis of flavonoids: crystal and molecular structures of morin hydrate and myricetin (1:2) triphenylphosphine oxide complex
The crystal and molecular structures of morin (2′,3,4′,5,7-pentahydroxyflavone) hydrate ( I), and myricetin (3′,4′,5′,3,5,7-hexahydroxyflavone) triphenylphosphine oxide (TPPO) (1:2) co-crystal complex ( II) have been studied by X-ray analysis and AM1 molecular orbital methods. The molecular conforma...
Saved in:
Published in: | Journal of molecular structure 1994-01, Vol.317 (1), p.89-97 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The crystal and molecular structures of morin (2′,3,4′,5,7-pentahydroxyflavone) hydrate (
I), and myricetin (3′,4′,5′,3,5,7-hexahydroxyflavone) triphenylphosphine oxide (TPPO) (1:2) co-crystal complex (
II) have been studied by X-ray analysis and AM1 molecular orbital methods. The molecular conformation of the two flavones described by the torsion angle θ[C(3)-C(2)-C(1t́)-C(2′)] between the benzopyrone and phenyl ring is −43.3° and 51.0° for molecules A and B of morin, respectively, and −37.0° for myricetin. Minimum energy conformations from AM1 molecular orbital calculations have θ values of −38.2° for morin and −27.0° for myricetin. The energy profile for rotation about θ for morin has a 28 kcal mol
−1 barrier at 0° due to steric interactions between the 2′-hydroxy and the 3-hydroxy group. There are two local minima near 30 and 140°, in good agreement with structural results. The profile for myricetin has two equivalent minima near 30 and 150° with a barrier of less than 2 kcal mol
−1. In the crystal both flavones form extensive networks of intra- and intermolecular hydrogen bonds. In (
I), each morin conformer packs in alternating layers linked by water molecules, while in (
II), TPPO stabilizes the crystal by formation of short hydrogen bonds (2.58–2.65 Å) of the phosphoryl oxygen to the flavone. Myricetin also forms a two dimensional sheet-like packing in which myricetin molecules hydrogen bond to each other, as well as to TPPO. These conformational and hydrogen bonding patterns provide insight into specific types of ligand-receptor interactions and support structure activity data which suggest the importance of electronic and hydrogen bonding properties in the bioactivity of flavones. |
---|---|
ISSN: | 0022-2860 1872-8014 |
DOI: | 10.1016/0022-2860(93)07867-V |