Loading…

A discrete probability function method for the equation of radiative transfer

A discrete probability function (DPF) method for the equation of radiative transfer is derived. The DPF is defined as the integral of the probability density function (PDF) over a discrete interval. The derivation allows the evaluation of the DPF of intensities leaving desired radiation paths includ...

Full description

Saved in:
Bibliographic Details
Published in:Journal of quantitative spectroscopy & radiative transfer 1993-03, Vol.49 (3), p.269-280
Main Authors: Sivathanu, Y.R., Gore, J.P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A discrete probability function (DPF) method for the equation of radiative transfer is derived. The DPF is defined as the integral of the probability density function (PDF) over a discrete interval. The derivation allows the evaluation of the DPF of intensities leaving desired radiation paths including turbulence-radiation interactions without the use of computer intensive stochastic methods. The DPF method has a distinct advantage over conventional PDF methods since the creation of a partial differential equation from the equation of transfer is avoided. Further, convergence of all moments of intensity is guaranteed at the basic level of simulation unlike the stochastic method where the number of realizations for convergence of higher order moments increases rapidly. The DPF method is described for a representative path with approximately integral-length scale-sized spatial discretization. The results show good agreement with measurements in a propylene/air flame except for the effects of intermittency resulting from highly correlated realizations. The method can be extended to the treatment of spatial correlations as described in the Appendix. However, information regarding spatial correlations in turbulent flames is needed prior to the execution of this extension.
ISSN:0022-4073
1879-1352
DOI:10.1016/0022-4073(93)90089-Z