Loading…
Timing in the evolution of derived floral characters: upper cretaceous (turonian) taxa with tricolpate and tricolpate-derived pollen
Various hypotheses that seek to explain the rich species diversity of angiosperms relative to other seed plants are briefly mentioned or reviewed. Of these, the subset that relates angiosperm diversity in some way to the relationship between angiosperms and insects, particularly anthophilous insects...
Saved in:
Published in: | Review of palaeobotany and palynology 1996-02, Vol.90 (3-4), p.339-359 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Various hypotheses that seek to explain the rich species diversity of angiosperms relative to other seed plants are briefly mentioned or reviewed. Of these, the subset that relates angiosperm diversity in some way to the relationship between angiosperms and insects, particularly anthophilous insects, is here the object of attention. Specifically, I address and reject the possibility that the relationship between angiosperm diversification and insects, particularly those demonstrating a preference for flowers with derived floral characteristics associated with insect pollination, may be ruled out because of asynchronous patterns of diversification in the fossil record. New data on floral structure from the Turonian of the Atlantic Coastal Plain reveal a surprising diversity of floral characters in taxa bearing tricolpate and tricolporate-derived pollen. The characters and taxa that appear in these Turonian sediments suggest that rather specific modes of insect pollination, perhaps involving highly derived insect pollinators, already existed at 90 Ma. Given the observed rate of diversification of angiosperms during that time and the pattern of evolution in insects, including what can be inferred about the history of the Apidae, these new floral data suggest that hypotheses relating angiosperm diversity to highly specific pollinators are still valid in the context of fossil evidence. Even so, consistency with fossil evidence is not necessarily proof of these relationships. In any case, there may well be multiple causes of relatively high angiosperm species diversity and understanding the relative importance of each of these requires neontological as well as paleontological investigations. One promising approach is to work within the context of phylogenetic patterns with more fossil data. |
---|---|
ISSN: | 0034-6667 1879-0615 |
DOI: | 10.1016/0034-6667(95)00091-7 |