Loading…
Reaction of methanol with Cu(111) and Cu(111) + O(ads)
The reactive chemistry of methanol on the Cu(111) surface, both with and without preadsorbed oxygen atoms, is investigated between 190 and 700 K. The clean Cu(111) surface is inert, and molecularly absorbed methanol, the only stable surface species identified on this surface, desorbs at about 210 K....
Saved in:
Published in: | Surface science 1985-11, Vol.163 (2), p.516-540 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The reactive chemistry of methanol on the Cu(111) surface, both with and without preadsorbed oxygen atoms, is investigated between 190 and 700 K. The clean Cu(111) surface is inert, and molecularly absorbed methanol, the only stable surface species identified on this surface, desorbs at about 210 K. Various trends are examined as a function of oxygen coverage, from the clean surface to the saturation oxygen coverage (approximately 0.45 O atom/Cu atom). The capacity of the surface to adsorb methanol (190 K), and the formaldehyde yield (∼ 400–450 K) are both maximized when the oxygen coverage is about 0.26 O atom/Cu atom. Trends in the yield of other products, and the temperature for decomposition of the stable methoxy intermediate are examined. Also, the rate of methoxy decomposition is limited by CH bond breaking as evidenced by a deuterium kinetic isotope effect (CH versus CD). A minor decomposition path for methanol on O + Cu(111) involves CO
2 formation, probably via a formate surface intermediate. Preadsorbed oxygen serves as an acceptor of the methanol hydroxyl hydrogen, enabling facile methanol conversion to methoxy at low oxygen coverage for
T ⩾ 190K. However. at high oxygen coverage (
θ ⪆ 0.26
O atom/Cu atom)
oxygen
inhibits surface reactivitv. A two-dimensional model which defines three types of surface sites is used to explain the general trend of methanol reactivity as a function of oxygen coverage. |
---|---|
ISSN: | 0039-6028 1879-2758 |
DOI: | 10.1016/0039-6028(85)91077-5 |