Loading…

Note on the spatial quantile of a random vector

Let α ∈ (0, 1); the α-quantile of an R k -valued ( k ⩾ 1) random variable X is a point θ ∈ R k minimizing the expectation E(‖ X − θ‖ p , α − ‖ X‖ p , α ), where ‖·‖ p , α is defined in terms of the ℓ p -norm, 1 ⩽ p ⩽ ∞, and α ∈ (0, 1). The properties of such an α-quantile extend those obtained previ...

Full description

Saved in:
Bibliographic Details
Published in:Statistics & probability letters 1992-03, Vol.13 (4), p.333-336
Main Authors: Abdous, B., Theodorescu, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let α ∈ (0, 1); the α-quantile of an R k -valued ( k ⩾ 1) random variable X is a point θ ∈ R k minimizing the expectation E(‖ X − θ‖ p , α − ‖ X‖ p , α ), where ‖·‖ p , α is defined in terms of the ℓ p -norm, 1 ⩽ p ⩽ ∞, and α ∈ (0, 1). The properties of such an α-quantile extend those obtained previously for α = 0.5, i.e. for the median (see Kemperman, 1987). Computational aspects are also discussed.
ISSN:0167-7152
1879-2103
DOI:10.1016/0167-7152(92)90043-5