Loading…

Influence of the laser intensity and spot size on the desorption of molecules and ions in matrix-assisted laser desorption/ionization with a uniform beam profile

The dependence of the number of desorbed particles on laser fluence has been investigated for matrix-assisted laser desorption/ionization (MALDI) of analyte and matrix ions as well as for (photoionized) neutral matrix molecules using a homogeneous “flat-top” laser profile. Laser spot diameters rangi...

Full description

Saved in:
Bibliographic Details
Published in:International journal of mass spectrometry and ion processes 1995-02, Vol.141 (2), p.127-148
Main Authors: Dreisewerd, Klaus, Schürenberg, Martin, Karas, Michael, Hillenkamp, Franz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The dependence of the number of desorbed particles on laser fluence has been investigated for matrix-assisted laser desorption/ionization (MALDI) of analyte and matrix ions as well as for (photoionized) neutral matrix molecules using a homogeneous “flat-top” laser profile. Laser spot diameters ranging from 10 to 200 μm in size have been used. 2,5-Dihydroxybenzoic acid (DHB) and 3,5-dimethoxy-4-hydroxycinnamic acid (sinapic acid) have been tested as matrices. The threshold (for ion detection) is higher and the dependence of the ion signal upon higher-than-threshold fluences is stronger for directly desorbed ions than for photoionized neutral molecules. Directly desorbed analyte ions exhibit the same dependence on fluence as the matrix ions with only minor differences between the two matrices tested, so both have approximately the same detection threshold. For both ions and photoionized neutral molecules, the fluence threshold increases with decreasing spot size while the slope of the intensity/fluence curves decreases. A quasi-thermal, sublimation/desportion model was found to describe the experimental results with excellent precision. For a complete explanation, non-equilibrium effects had to be taken into account.
ISSN:0168-1176
1873-2801
DOI:10.1016/0168-1176(94)04108-J