Loading…
Petroleum geology of the Black Sea
The Black Sea comprises two extensional basins formed in a back-arc setting above the northward subducting Tethys Ocean, close to the southern margin of Eurasia. The two basins coalesced late in their post-rift phases in the Pliocene, forming the present single depocentre. The Western Black Sea was...
Saved in:
Published in: | Marine and petroleum geology 1996-03, Vol.13 (2), p.195-223 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Black Sea comprises two extensional basins formed in a back-arc setting above the northward subducting Tethys Ocean, close to the southern margin of Eurasia. The two basins coalesced late in their post-rift phases in the Pliocene, forming the present single depocentre. The Western Black Sea was initiated in the Aptian, when a part of the Moesian Platform (now the Western Pontides of Turkey) began to rift and move away to the south-east. The Eastern Black Sea probably formed by separation of the Mid-Black Sea High from the Shatsky Ridge during the Palaeocene to Eocene. Subsequent to rifting, the basins were the sites of mainly deep water deposition; only during the Late Miocene was there a major sea-level fall, leading to the development of a relatively shallow lake. Most of the margins of the Black Sea have been extensively modified by Late Eocene to recent compression associated with closure of the Tethys Ocean. Gas chromatography—mass spectrometry and carbon isotope analysis of petroleum and rock extracts suggest that most petroleum occurrences around the Black Sea can be explained by generation from an oil-prone source rock of most probably Late Eocene age (although a wider age range is possible in the basin centres). Burial history modelling and source kitchen mapping indicate that this unit is currently generating both oil and gas in the post-rift basin. A Palaeozoic source rock may have generated gas condensate in the Gulf of Odessa. In Bulgarian waters, the main plays are associated with the development of an Eocene foreland basin (Kamchia Trough) and in extensional structures related to Western Black Sea rifting. The latter continue into the Romanian shelf where there is also potential in rollover anticlines due to gravity sliding of Neogene sediments. In the Gulf of Odessa gas condensate has been discovered in several compressional anticlines and there is potential in older extensional structures. Small gas and oil discoveries around the Sea of Azov point to further potential offshore around the Central Azov High. In offshore Russia and Georgia there are large culminations on the Shatsky Ridge, but these are mainly in deep water and may have poor reservoirs. There are small compressional structures off the northern Turkish coast related to the Pontide deformation; these may include Eocene turbidite reservoirs. The extensional fault blocks of the Andrusov Ridge (Mid-Black Sea High) are seen as having the best potential for large hydrocarbon vol |
---|---|
ISSN: | 0264-8172 1873-4073 |
DOI: | 10.1016/0264-8172(95)00042-9 |