Loading…
Enzyme activities and membrane lipids in Artemia cysts after a long duration space flight
In the Free Flyer Biostack Experiment (L.D.E.F. mission) investigations have shown that biological objects in a resting state can survive more than 5.5 years of exposure to the space factors in particular microgravity and cosmic rays. We have measured enzyme activities involved in metabolic pathways...
Saved in:
Published in: | Advances in space research 1996, Vol.18 (12), p.221-227 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the Free Flyer Biostack Experiment (L.D.E.F. mission) investigations have shown that biological objects in a resting state can survive more than 5.5 years of exposure to the space factors in particular microgravity and cosmic rays. We have measured enzyme activities involved in metabolic pathways of sugar and lipid degradation and determined phospholipid composition. Pyruvate kinase and glucose-6-phosphate dehydrogenase activities in space-exposed cysts were higher than in earth controls after 1 hour incubation. In controls, total phospholipids remained unchanged, on the contrary they increased significantly in space-exposed cysts. The rate of metabolism of various phospholipid components was unchanged in controls allowing the development while the level of most of them decreased in space-exposed cysts except for phosphatidylcholine. Enzyme activities (acetylhydrolase, phospholipase A
2 and lyso phospholipase) involved in phospholipid degradation increased; however, activities were much higher in space-exposed cysts. In conclusion, the long duration space flight resulted in an increase of the metabolic activity correlated with a faster development within the first 20 hours of post flight incubation. |
---|---|
ISSN: | 0273-1177 1879-1948 |
DOI: | 10.1016/0273-1177(96)00043-9 |