Loading…
Modeling and simulation of combustion processes of charring and non-charring solid fuels
Some of the progress that, owing to modeling and numerical simulation, has been made to the understanding of chemical and physical processes, which occur during combustion of solid fuels, is presented. The first part of the review deals with thermal degradation processes of charring (2ood and, in ge...
Saved in:
Published in: | Progress in energy and combustion science 1993, Vol.19 (1), p.71-104 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Some of the progress that, owing to modeling and numerical simulation, has been made to the understanding of chemical and physical processes, which occur during combustion of solid fuels, is presented. The first part of the review deals with thermal degradation processes of charring (2ood and, in general, cellulosic materials) and non-charring (poly-methyl-methacrylate) materials. Gas-phase combustion processes (ignition, flame spread and extinction) are discussed in the second part of the review. Solid fuel degradation has been described by kinetic models of different complexity, varying from a simple one-step global reaction, to multi-step reaction mechanisms, accounting only for primary solid fuel degradation, and to semi-global reaction mechanisms, accounting for both primary solid degradation and secondary degradation of evolved primary pyrolysis products. Semi-global kinetic models have been coupled to models of transport phenomena to simulate thermal degradation of charring fuels under ablation regime conditions. The effects of bubble formation on the transport of volatiles during thermal degradation of non-charring fuels, described through a one-step global reaction, have also been modeled. On the contrary, very simplified treatments of solid phase processes have been used when gas phase combustion processes are also simulated. On the other hand, the latter have also always been described through one-step global reactions. Numerical modeling has allowed controlling mechanisms of ignition and flame spread to be determined and the understanding of the interaction between chemistry and physics during thermal degradation of solid fuels to be improved. However, the chemical processes are not well understood, the few kinetic data are in most cases empirical and variations of solid properties during degradation are very poorly known, so that even the most advanced models do not in general give quantitative predictions. |
---|---|
ISSN: | 0360-1285 1873-216X |
DOI: | 10.1016/0360-1285(93)90022-7 |