Loading…
Spin in the path integral: anti-commuting versus commuting variables
We discuss the equivalence between the path integral representations of spin dynamics for anti-commuting (Grassmann) and commuting variables and establish a bosonization dictionary for both generators of spin and single fermion operators. The content of this construction in terms of the representati...
Saved in:
Published in: | Physics letters. B 1995-02, Vol.345 (3), p.242-247 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We discuss the equivalence between the path integral representations of spin dynamics for anti-commuting (Grassmann) and commuting variables and establish a bosonization dictionary for both generators of spin and single fermion operators. The content of this construction in terms of the representations of the spin algebra is discussed in the path integral setting. Finally it is shown how a ‘free field realization’ (Dyson mapping) can be constructed in the path integral. |
---|---|
ISSN: | 0370-2693 1873-2445 |
DOI: | 10.1016/0370-2693(94)01635-P |