Loading…
Cochran theorems for a multivariate elliptically contoured model
Let Y be a multivariate elliptically contoured n × p random matrix with an MEC n × p ( μ,∑ Y , ø) distribution and P( Y = μ) < 1. Let i = 1,2, …, L, W i be an n × n nonnegative definite (n.n.d.) matrix, and m i ϵ {1,2,…}, Q i(Y) = (Y − μ)′ W i(Y − μ) and ∑( ≠ 0) be a p × p n.n.d. matrix. Then (a)...
Saved in:
Published in: | Journal of statistical planning and inference 1995, Vol.43 (1), p.257-270 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let
Y be a multivariate elliptically contoured
n ×
p random matrix with an
MEC
n ×
p
(
μ,∑
Y
,
ø) distribution and
P(
Y =
μ) < 1. Let
i = 1,2, …,
L,
W
i
be an
n ×
n nonnegative definite (n.n.d.) matrix, and
m
i
ϵ {1,2,…}, Q
i(Y) = (Y − μ)′ W
i(Y − μ) and ∑( ≠ 0) be a
p ×
p n.n.d. matrix. Then (a) and (b) are equivalent:
1.
(a) (
Q
1(
Y),
Q
2(
Y), …,
Q
L
(
Y)) ∼
GW
p
(
m
1,
m
2, …,
m
L
;
n − ∑
L
i = 1
m
i
; ∑; ø).
2.
(b) For some n.n.d.
n ×
n matrix
A and for any distinct
i,
j = 1,2, …,
L,
2.1.
(i) (
W
i
⊗
I
p
) (∑
Y
−
A ⊗ ∑) (
W
i
⊗
I
p
) = 0,
2.2.
(ii)
AW
i
AW
i
=
AW
i
,
r(
AW
i
) =
m
i
,
2.3.
(iii)
W
i
AW
j
= 0 and
2.4.
(iv) (
W
i
⊗
I
p
)∑
Y
(
W
j
⊗
I
p
) = 0.
Moreover if
r(
W
i
) =
m
i
for each
i, then (a′) and (b′) are equivalent:
1.
(a′) (
Q
1(
Y),
Q
2(
Y), …,
Q
L
(
Y)) ∼
GW
p
(
r(
W
1),
r(
W
2), …,
r(
W
L
);
n − ∑
L
i = 1
r(
W
i
); ∑; ø).
2.
(b′) For any distinct
i,
j = 1, 2, …,
L,
2.1.
(i) (
W
i
⊗
I
p
) ∑
Y
(
W
i
⊗
I
p
) =
W
i
⊗ ∑ and
2.2.
(ii) (
W
i
⊗
I
p
) ∑
Y
(
W
i
⊗
I
p
) = 0.
Applications are given for certain MANOVA models and multivariate components of variance models. The above results are general in that ∑
Y
is no longer required to have the form A ⊗ ∑. |
---|---|
ISSN: | 0378-3758 1873-1171 |
DOI: | 10.1016/0378-3758(94)00025-Q |