Loading…

High-speed gas chromatographic separations with diaphragm valve-based injection and chemometric analysis as a gas chromatographic “sensor”

A high-speed gas chromatography system, the gas chromatographic sensor (GCS), is developed and evaluated. The GCS combines fast separations and chemometric analysis to produce an instrument capable of high-speed, high-throughput screening and quantitative analysis of complex chemical mixtures on a s...

Full description

Saved in:
Bibliographic Details
Published in:Analytica chimica acta 2003-08, Vol.490 (1), p.223-230
Main Authors: Hope, Janiece L., Johnson, Kevin J., Cavelti, Marianne A., Prazen, Bryan J., Grate, Jay W., Synovec, Robert E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A high-speed gas chromatography system, the gas chromatographic sensor (GCS), is developed and evaluated. The GCS combines fast separations and chemometric analysis to produce an instrument capable of high-speed, high-throughput screening and quantitative analysis of complex chemical mixtures on a similar time scale as typical chemical sensors. The GCS was evaluated with 28 test mixtures consisting of 15 compounds from four chemical classes: alkanes, ketones, alkyl benzenes, and alcohols. The chromatograms are on the order of one second in duration, which is considerably faster than the traditional use of gas chromatography. While complete chromatographic separation of each analyte peak is not aimed for, chemical information is readily extracted through chemometric data analysis and quantification of the samples is achieved in considerably less time than conventional gas chromatography. Calibration models to predict percent volume content of either alkanes or ketones were constructed using partial least squares (PLS) regression on calibration sets consisting of the five replicate GCS runs of six different samples. The percent volume content of the alkane and ketone chemical classes were predicted on five replicate runs of the 22 remaining samples ranging from 0 to 50 or 60% depending on the class. Root mean square errors of prediction were 2–3% relative to the mean percent volume values for either alkane or ketone prediction models, depending on the samples chosen for the calibration set of that model. The alkyl benzenes and alcohols present in the calibration sets or samples were treated as variable background interference. It is anticipated that the GCS will eventually be used to rapidly sample and directly analyze industrial processes or for the high throughput analysis of batches of samples.
ISSN:0003-2670
1873-4324
DOI:10.1016/S0003-2670(03)00670-6