Loading…
Hypergeometric symbolic calculus. II – Systems of confluent equations
We apply the hypergeometric symbolic calculus introduced in the previous work [A. Debiard, B. Gaveau, Hypergeometric symbolic calculus. I – Systems of two symbolic hypergeometric equations] to the determination of the general solution of degenerate hypergeometric equations in two variables and to th...
Saved in:
Published in: | Bulletin des sciences mathématiques 2003-05, Vol.127 (3), p.261-280 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We apply the hypergeometric symbolic calculus introduced in the previous work [A. Debiard, B. Gaveau, Hypergeometric symbolic calculus. I – Systems of two symbolic hypergeometric equations] to the determination of the general solution of degenerate hypergeometric equations in two variables and to the determination of a basis of the vector space of solutions of the 20 confluent systems of Horn.
Nous définissons un nouveau calcul hypergéométrique symbolique qui permet la détermination des solutions générales d'équations aux dérivées partielles hypergéométriques de deux variables. Nous appliquons cette méthode à la détermination d'une base de l'espace vectoriel des solutions des 14 systèmes d'Appell–Kampé de Fériet et Horn. Nous en déduisons ainsi de nouvelles représentations intégrales des solutions. |
---|---|
ISSN: | 0007-4497 1952-4773 |
DOI: | 10.1016/S0007-4497(03)00017-4 |