Loading…

Peroxisome proliferator nafenopin potentiated cytotoxicity and genotoxicity of cyclophosphamide in the liver and bone marrow cells

Peroxisome proliferators are ubiquitous rodent hepatocarcinogens, known to modulate the activities of xenobiotic-metabolising enzymes such as glutathione S-transferases (GST) and mixed-function oxidases (cytochrome P-450). In addition these compounds induce pleiotropic changes in the liver of rodent...

Full description

Saved in:
Bibliographic Details
Published in:Chemico-biological interactions 1997-07, Vol.105 (2), p.81-97
Main Authors: Voskoboinik, I., Drew, R., Ahokas, J.T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Peroxisome proliferators are ubiquitous rodent hepatocarcinogens, known to modulate the activities of xenobiotic-metabolising enzymes such as glutathione S-transferases (GST) and mixed-function oxidases (cytochrome P-450). In addition these compounds induce pleiotropic changes in the liver of rodents even after a short-term treatment. It has been hypothesised that the enzymatic and cellular changes induced by peroxisome proliferators may alter the toxicity of other compounds activated by cytochrome P-450 and detoxified by GST isoenzymes. The effect of nafenopin-induced changes in the liver of rats on the toxicity of an anti-cancer drug cyclophosphamide was studied using cyto- and geno-toxicity parameters in the liver and bone marrow cells. The administration of cyclophosphamide (10 or 20 mg/kg bw) to the rats pre-treated with 80 mg/kg bw of nafenopin for 2 days resulted in significantly increased cytotoxic response in bone marrow cells. However, genotoxicity of cyclophosphamide was increased only in the liver of nafenopin pre-treated rats. Low level of genotoxicity in bone marrow could be accounted for potentiated cytotoxicity of cyclophosphamide. These events coincided with a significant, up to 5-fold, increase in indirect activation-detoxication index for cyclophosphamide, determined as a ratio of ECOD and GST activities, in nafenopin treated rats. This resulted from the induction of ECOD responsible for the formation of reactive metabolites of cyclophosphamide and reduced activity of GST responsible for their detoxication. In addition, mitotic activity of hepatocytes was increased in nafenopin treated rats that might also have an impact on the genotoxicity of cyclophosphamide in this organ.
ISSN:0009-2797
1872-7786
DOI:10.1016/S0009-2797(97)00039-2