Loading…

Domino tableaux, Schützenberger involution, and the symmetric group action

We define an action of the symmetric group S [ n/2] on the set of domino tableaux, and prove that the number of domino tableaux of weight β′ does not depend on the permutation of the weight β′. A bijective proof of the well known result due to J. Stembridge that the number of self-evacuating tableau...

Full description

Saved in:
Bibliographic Details
Published in:Discrete mathematics 2000-10, Vol.225 (1), p.15-24
Main Authors: Berenstein, Arkady, Kirillov, Anatol N.
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We define an action of the symmetric group S [ n/2] on the set of domino tableaux, and prove that the number of domino tableaux of weight β′ does not depend on the permutation of the weight β′. A bijective proof of the well known result due to J. Stembridge that the number of self-evacuating tableaux of a given shape and weight β=( β 1,…, β [( n+1)/2] , β [ n/2] ,…, β 1), is equal to that of domino tableaux of the same shape and weight β′=( β 1,…, β [( n+1)/2] ) is given. Nous définissons une action du groupe symétrique S [ n/2] sur l'ensemble des tableaux domino (‘domino tableaux’) et prouvons que le nombre de tableaux domino de poids β′ ne dépend pas de la permutation du poids β′. Une preuve bijective du résultat bien connu de J. Stembridge, voulant que le nombre de ‘self-evacuating tableaux’ d'une forme donnée et de poids β=( β 1,…, β [( n+1)/2] , β [ n/2] ,…, β 1) soit égal au nombre des tableaux domino de la même forme et de poids β=( β 1,…, β [( n+1)/2] ), est donnée.
ISSN:0012-365X
1872-681X
DOI:10.1016/S0012-365X(00)00145-X