Loading…
Laboratory simulation of an oxidizing perturbation in a deep granite environment
An experiment designed to study oxidizing perturbations in deep crystalline rock, a potential host for nuclear waste disposal, was conducted. This experiment simulated a fracture surface in contact with circulating groundwater, in which dissolved oxygen was injected periodically. Major physicochemic...
Saved in:
Published in: | Geochimica et cosmochimica acta 2002-07, Vol.66 (14), p.2583-2601 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An experiment designed to study oxidizing perturbations in deep crystalline rock, a potential host for nuclear waste disposal, was conducted. This experiment simulated a fracture surface in contact with circulating groundwater, in which dissolved oxygen was injected periodically. Major physicochemical and biological parameters were monitored during this 1-yr experiment. Modeling of the results indicates that the kinetics of oxygen uptake may be represented by a simple steady-state rate law combining enzymatic catalysis (Monod) and a first-order rate law. Combined chemical and biological data demonstrate the coupling of organic/inorganic processes during the uptake of dissolved oxygen and the progressive return to reducing conditions. Timescales for these stages are discussed. Experimental results also suggest that iron-reducing bacteria, which are robust and well-adapted microorganisms, play a key role in these interfacial processes. These results show that an operational definition of the “redox buffering capacity” in a granitic medium cannot ignore the effect of bacteria and therefore the controls on bacterial substrates (organic carbon, H
2, CH
4, CO
2). |
---|---|
ISSN: | 0016-7037 1872-9533 |
DOI: | 10.1016/S0016-7037(02)00851-7 |