Loading…

Quantitative differences in evaluating soil humic substances by liquid- and solid-state 13C-NMR spectroscopy

We compared the quantitative responses of liquid-state (LS) and solid-state (CPMAS) 13C-NMR spectroscopy of four different soil humic substances. The intensities of signals for the alkyl carbons (0–40 ppm) were significantly larger in CPMAS than in LS spectra. This difference is in agreement with th...

Full description

Saved in:
Bibliographic Details
Published in:Geoderma 1997-11, Vol.80 (3), p.339-352
Main Authors: Conte, P., Piccolo, A., van Lagen, B., Buurman, P., de Jager, P.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We compared the quantitative responses of liquid-state (LS) and solid-state (CPMAS) 13C-NMR spectroscopy of four different soil humic substances. The intensities of signals for the alkyl carbons (0–40 ppm) were significantly larger in CPMAS than in LS spectra. This difference is in agreement with the pseudo-micellar model of the conformational nature of humic substances. By this view, the hydrophobic interactions holding together the heterogeneous molecules of humic micelles inhibit the molecular motions of the alkyl carbons, thereby enhancing the spin-lattice relaxation times and consequently lowering the sensitivity of liquid-state NMR. Conversely, regardless of their position in the humic conformation, a better estimation of the number of alkyl carbons can be obtained by CPMAS-NMR because of the cross-polarization of hydrogen nuclei in CH 2 and CH 3 groups. The intensity of the 40–110 ppm region is also slightly lower in LS than in CPMAS-NMR spectra, despite the hydrophilicity of the oxidized and peptidic carbons resonating in this chemical shift interval. Their molecular motion may also be reduced by either the formation of intra- and inter-molecular hydrogen bondings due to poorly acidic hydroxyl groups of saccharides, or the degree of conformational rigidity that a pseudo-micellar arrangement confers even to hydrophilic domains. The higher content of aromatic carbons (110–160 ppm) found in the LS spectra was attributed partly to the high degree of substitution of the aromatic ring that slows down cross-polarization in CPMAS experiments and partly to the relative overestimation of this region by LS-NMR due to a lack of signal in the aliphatic interval. The slightly lower content of carboxyl carbons estimated in CPMAS spectra as compared to LS spectra was also attributed to slow cross-polarization. This work shows that the combined use of both NMR techniques is profitable in conformational analysis of humic substances and of dissolved organic matter in general.
ISSN:0016-7061
1872-6259
DOI:10.1016/S0016-7061(97)00059-1