Loading…
The local theory for viscous Hamilton–Jacobi equations in Lebesgue spaces
We consider viscous Hamilton–Jacobi equations of the form (VHJ) u t−Δu=a|∇u| p, x∈ R N, t>0, u(x,0)=u 0(x), x∈ R N, where a∈ R , a≠0 and p⩾1. We provide an extensive investigation of the local Cauchy problem for (VHJ) for irregular initial data u 0, namely for u 0 in Lebesgue spaces L q=L q( R N)...
Saved in:
Published in: | Journal de mathématiques pures et appliquées 2002, Vol.81 (4), p.343-378 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider viscous Hamilton–Jacobi equations of the form
(VHJ)
u
t−Δu=a|∇u|
p,
x∈
R
N,
t>0,
u(x,0)=u
0(x),
x∈
R
N,
where
a∈
R
,
a≠0 and
p⩾1. We provide an extensive investigation of the local Cauchy problem for (VHJ) for irregular initial data
u
0, namely for
u
0 in Lebesgue spaces
L
q=L
q(
R
N)
, 1⩽
q |
---|---|
ISSN: | 0021-7824 |
DOI: | 10.1016/S0021-7824(01)01243-0 |