Loading…
Temperature-dependent line broadening of chromophores in amorphous solids: Differences between single-molecule spectroscopy and photon echo results
Spectroscopic techniques exhibit different sensitivities for line broadening processes in amorphous solids. Photon echo and hole-burning spectroscopy yield averages over the chromophore ensemble. At low temperatures, the results can usually be fitted with a combination of a power-law term — correspo...
Saved in:
Published in: | Journal of luminescence 1998-02, Vol.76, p.157-160 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Spectroscopic techniques exhibit different sensitivities for line broadening processes in amorphous solids. Photon echo and hole-burning spectroscopy yield averages over the chromophore ensemble. At low temperatures, the results can usually be fitted with a combination of a power-law term — corresponding to the relaxations of two-level systems- and of an exponentially activated contribution of pseudo-local phonon modes. Single-molecule spectroscopy (SMS). in contrast, can resolve the behavior of single dye molecules and yields a distribution of power laws as well as of activation energies. We compare photon echo results for tetra-tert-butylterrylene (TBT) in polyisobutylene (PIB) with SMS data for the same system. The latter were used to simulate numerically the data which would be obtained in an ensemble-averaging experiment. The results of the numerical calculation can be well fitted without assuming a distribution of parameters. |
---|---|
ISSN: | 0022-2313 1872-7883 |
DOI: | 10.1016/S0022-2313(97)00199-3 |