Loading…
Self-organization in network glasses
The continuous random network model is widely used as a realistic description of the structure of covalent glasses and amorphous solids. We point out that in real glasses and amorphous materials, there are non-random structural elements that go beyond just simple chemical ordering. We propose that t...
Saved in:
Published in: | Journal of non-crystalline solids 2000-05, Vol.266, p.859-866 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The continuous random network model is widely used as a realistic description of the structure of covalent glasses and amorphous solids. We point out that in real glasses and amorphous materials, there are non-random structural elements that go beyond just simple chemical ordering. We propose that the network can self-organize at its formation or fictive temperature, and examine some of the possible consequences of such self-organization. We find that the absence of small rings can cause the mechanical threshold to change from a second order to a first order transition. We show that if stressed regions are inhibited in the network, then there are two-phase transitions and an intermediate phase that is rigid but stress-free. This intermediate phase is bounded by a second order transition on one side and a first order transition on the other. Recent experiments in chalcogenide glasses give evidence for this intermediate phase. |
---|---|
ISSN: | 0022-3093 1873-4812 |
DOI: | 10.1016/S0022-3093(99)00856-X |