Loading…

Four-week ethanol drinking increases both thyrotropin-releasing hormone (TRH) release and content in rat pancreatic islets

Ethanol exerts profound effects on the endocrine and exocrine pancreas. Some effects of chronic alcohol consumption on insulin secretion in response to glucose load are similar to those of TRH gene disruption. TRH is present in insulin-producing B-cells of the islets of Langerhans; its role in this...

Full description

Saved in:
Bibliographic Details
Published in:Life sciences (1973) 2000-01, Vol.66 (7), p.629-639
Main Authors: Benický, J., Nikodémová, M., Scsuková, S., Zórad, Š., Štrbák, V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ethanol exerts profound effects on the endocrine and exocrine pancreas. Some effects of chronic alcohol consumption on insulin secretion in response to glucose load are similar to those of TRH gene disruption. TRH is present in insulin-producing B-cells of the islets of Langerhans; its role in this location is still not fully explored. To examine the possible effect of long-term in vivo ethanol treatment on pancreatic TRH we compared three groups of rats: a 10% (wt:vol) ethanol-drinking group (E), absolute controls (AC) and pair-fed (PF) group with solid food intake corresponding to that of E. The fluidity of pancreatic membranes was not affected by chronic in vivo exposure of rats to ethanol, but was significantly decreased in PF group. Four-week treatment resulted in significantly higher TRH content in isolated islets of the E group and increased basal and 80 mM isotonic ethanol-induced secretion compared to AC and PF. Plasma levels of insulin, C-peptide, IGF-I, and glycemia were, however, not affected by ethanol treatment. Cell swelling, which can be induced by the presence of permeants (e.g. ethanol) in an isotonic extracellular medium, is a strong stimulus for secretion in various types of cells. In the present study, isosmotic ethanol (40, 80, and 160 mM) induced dose-dependent release of TRH and insulin from adult rat pancreatic islets in vitro. The same concentrations were not effective when applied in a hyperosmotic medium (addition of ethanol directly to the medium), thus indicating the participation of cell swelling in the ethanol-induced secretion. In conclusion, chronic ethanol treatment significantly affected pancreatic TRH and this effect might be mediated by cell swelling. The role of these changes in the profound effect of ethanol on the endocrine and exocrine pancreas remains to be established.
ISSN:0024-3205
1879-0631
DOI:10.1016/S0024-3205(99)00635-9