Loading…
A polynomial fit preconditioner for band Toeplitz matrices in image reconstruction
The preconditioned conjugate gradient (CG) is often applied in image reconstruction as a regularizing method. When the blurring matrix has Toeplitz structure, the modified circulant preconditioner and the inverse Toeplitz preconditioner have been shown to be effective. We introduce here a preconditi...
Saved in:
Published in: | Linear algebra and its applications 2002-05, Vol.346 (1), p.177-197 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The preconditioned conjugate gradient (CG) is often applied in image reconstruction as a regularizing method. When the blurring matrix has Toeplitz structure, the modified circulant preconditioner and the inverse Toeplitz preconditioner have been shown to be effective. We introduce here a preconditioner for symmetric positive definite Toeplitz matrices based on a trigonometric polynomial fit which has the same effectiveness of the previous ones but has a lower cost when applied to band matrices. The case of band block Toeplitz matrices with band Toeplitz blocks (BTTB) corresponding to separable point spread functions (PSFs) is also considered. |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/S0024-3795(01)00513-4 |