Loading…

Aqueous sulfur species determination using differential pulse polarography

Sulfur species play pivotal roles in biogeochemistry; however, quantification remains difficult because such species are transitory. Our objective was to determine the utility of using differential pulse polarography (DPP) to characterize soluble sulfur species of potential interest in agriculture a...

Full description

Saved in:
Bibliographic Details
Published in:Microchemical journal 2002-12, Vol.73 (3), p.287-297
Main Authors: Umiker, Karl J., Morra, Matthew J., Francis Cheng, I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sulfur species play pivotal roles in biogeochemistry; however, quantification remains difficult because such species are transitory. Our objective was to determine the utility of using differential pulse polarography (DPP) to characterize soluble sulfur species of potential interest in agriculture and environmental quality. Polarographic responses for sulfide, disulfide, pentasulfide, sulfite, thiosulfate, tetrathionate, pentathionate, cysteine, and glutathione were determined. Sulfur in the compounds was categorized as cysteine-S, thiosulfate-S, nonpurgeable or purgeable sulfide-S, or sulfite based on characteristic polarographic responses for each respective category. Nonpurgeable sulfide-S, cysteine-S, and thiosulfate-S were polarographically separated using a pH 8.0 phosphate buffer. Nitrate/bicarbonate (pH 10.0) and acetate (pH 5.0) buffers were used to determine purgeable sulfide-S and sulfite, respectively. Sulfur in water extracts from cysteine-amended soils was quantified using the developed DPP method. Cysteine-, thiosulfate-, and sulfide-S were measured from these extracts without interferences during a 16-d incubation period. The developed DPP method provides qualitative and quantitative information concerning sulfur species in aqueous solutions and is potentially applicable to soil and sediment extracts.
ISSN:0026-265X
1095-9149
DOI:10.1016/S0026-265X(02)00097-8