Loading…

Temporal, spatial and thermal features of 3-D Rayleigh-Bénard convection by a least-squares finite element method

Numerical solutions of 3-D time-dependent Rayleigh-Bénard convection are presented in this work. The temporal, spatial and thermal features of convective patterns are studied for four different geometric aspect ratios, 2:1:2, 4:1:4, 5:1:5 and 3.5:1:2.1 at supercritical Rayleigh numbers Ra = 8 × 10 3...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in applied mechanics and engineering 1997-01, Vol.140 (3), p.201-219
Main Authors: Tang, Li Q., Tsang, Tate T.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Numerical solutions of 3-D time-dependent Rayleigh-Bénard convection are presented in this work. The temporal, spatial and thermal features of convective patterns are studied for four different geometric aspect ratios, 2:1:2, 4:1:4, 5:1:5 and 3.5:1:2.1 at supercritical Rayleigh numbers Ra = 8 × 10 3, 2.4 × 10 4 and Prandtl numbers Pr = 0.71, 2.5. Several physical phenomena, such as multicellular flow pattern, oscillatory transient solution, ‘T-shaped’ rolls at the ends of a rectangular box, and roll alignment, are observed in our simulations. The numerical technique is based on an implicit, fully coupled, and time-accurate method, which consists of the Crank-Nicolson scheme for time integration, Newton's method for the convective terms with extensive linearization steps, and a least-squares finite element method. A matrix-free algorithm of the Jacobi conjugate gradient method is implemented to solve the symmetric, positive definite linear system of equations.
ISSN:0045-7825
1879-2138
DOI:10.1016/S0045-7825(96)01053-5