Loading…
Evaluation of vegetative criteria for near-surface groundwater detection using multispectral mapping and GIS techniques in semi-arid Botswana
The critical need to consider all options in the search for groundwater in semi-arid areas has promoted work on the possible association of near-surface groundwater and vegetation characteristics using a combination of remote-sensing data and geographic information systems (GIS) techniques. Two vege...
Saved in:
Published in: | Applied geography (Sevenoaks) 1998-10, Vol.18 (4), p.331-354 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The critical need to consider all options in the search for groundwater in semi-arid areas has promoted work on the possible association of near-surface groundwater and vegetation characteristics using a combination of remote-sensing data and geographic information systems (GIS) techniques. Two vegetative criteria (dense woody cover and abundance of deep-rooting species) are identified as being indicative of near-surface groundwater, and their spatial distribution is tested against the location of aquifers in southeast Botswana. Vegetative criteria classes were combined in a GIS environment with the distribution of geomorphic units and bedrock geology to determine the degree of coincidence with assumed or known aquifers. Results indicate that the distribution of dense woody vegetation as mapped from Thematic Mapper imagery has some potential in identifying especially surficial but also bedrock near-surface groundwater sources in mostly naturally vegetated semi-arid areas. Dense woody cover classes tend to select aquifers in topographically higher areas while classes comprising some deep-rooting species tend to select low-lying aquifers such as those occurring in fossil valleys. Deep-rooting species, however, are less successful as a vegetative criterion. Although various technical refinements are suggested, this work shows that vegetative criteria mapping can however be used in conjunction with conventional geological/geophysical techniques to enhance the prospects for groundwater location in relatively undisturbed semi-arid areas. |
---|---|
ISSN: | 0143-6228 1873-7730 |
DOI: | 10.1016/S0143-6228(98)00025-3 |