Loading…
Adrenomedullin and cancer
Adrenomedullin (AM) is a pluripotent hormone with structural similarities to calcitonin gene-related peptide (CGRP), which is expressed by many tissues in the body and shows a remarkable range of effects mediated by paracrine/autocrine and possibly endocrine mechanisms. AM has been implicated as a m...
Saved in:
Published in: | Regulatory peptides 2003-04, Vol.112 (1), p.175-183 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Adrenomedullin (AM) is a pluripotent hormone with structural similarities to calcitonin gene-related peptide (CGRP), which is expressed by many tissues in the body and shows a remarkable range of effects mediated by paracrine/autocrine and possibly endocrine mechanisms. AM has been implicated as a mediator of several pathologies such as cardiovascular and renal disorders, sepsis, inflammation, diabetes and cancer, among others. AM is expressed in a variety of tumors where it aggravates several of the molecular and physiological features of malignant cells. AM has been shown to be a mitogenic factor stimulating growth in several cancer types and to encourage a more aggressive tumor phenotype. In addition, AM is an apoptosis survival factor for cancer cells and an indirect suppressor of the immune response through its binding protein, complement factor H, and regulation in expression of cytokines. AM plays an important role in environments subjected to low oxygen tensions, which is a typical feature in the proximity of solid tumors. Under these conditions, AM is upregulated through a hypoxia-inducible factor 1 (HIF-1)-dependent pathway and acts as a potent angiogenic factor promoting neovascularization. The collective findings brought together over the last years place AM as a major regulator of carcinogenesis-tumor progression and identifies its autocrine loop as a putative target for developing new strategies against human cancers. |
---|---|
ISSN: | 0167-0115 1873-1686 |
DOI: | 10.1016/S0167-0115(03)00037-5 |