Loading…

Adrenomedullin and cancer

Adrenomedullin (AM) is a pluripotent hormone with structural similarities to calcitonin gene-related peptide (CGRP), which is expressed by many tissues in the body and shows a remarkable range of effects mediated by paracrine/autocrine and possibly endocrine mechanisms. AM has been implicated as a m...

Full description

Saved in:
Bibliographic Details
Published in:Regulatory peptides 2003-04, Vol.112 (1), p.175-183
Main Authors: Zudaire, E, Martı́nez, A, Cuttitta, F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Adrenomedullin (AM) is a pluripotent hormone with structural similarities to calcitonin gene-related peptide (CGRP), which is expressed by many tissues in the body and shows a remarkable range of effects mediated by paracrine/autocrine and possibly endocrine mechanisms. AM has been implicated as a mediator of several pathologies such as cardiovascular and renal disorders, sepsis, inflammation, diabetes and cancer, among others. AM is expressed in a variety of tumors where it aggravates several of the molecular and physiological features of malignant cells. AM has been shown to be a mitogenic factor stimulating growth in several cancer types and to encourage a more aggressive tumor phenotype. In addition, AM is an apoptosis survival factor for cancer cells and an indirect suppressor of the immune response through its binding protein, complement factor H, and regulation in expression of cytokines. AM plays an important role in environments subjected to low oxygen tensions, which is a typical feature in the proximity of solid tumors. Under these conditions, AM is upregulated through a hypoxia-inducible factor 1 (HIF-1)-dependent pathway and acts as a potent angiogenic factor promoting neovascularization. The collective findings brought together over the last years place AM as a major regulator of carcinogenesis-tumor progression and identifies its autocrine loop as a putative target for developing new strategies against human cancers.
ISSN:0167-0115
1873-1686
DOI:10.1016/S0167-0115(03)00037-5