Loading…
Optimization of an in vivo X-ray fluorescence mercury measurement system
A non-invasive in vivo X-ray fluorescence (XRF) method of measuring renal mercury concentrations has previously been reported, as a potential occupational monitoring tool for those who work with this toxic element [Phys. Med. Biol. 40 (1995) 413]. However, the detection limits remain high compared t...
Saved in:
Published in: | Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms Beam interactions with materials and atoms, 2004, Vol.213, p.560-563 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A non-invasive in vivo X-ray fluorescence (XRF) method of measuring renal mercury concentrations has previously been reported, as a potential occupational monitoring tool for those who work with this toxic element [Phys. Med. Biol. 40 (1995) 413]. However, the detection limits remain high compared to the typical values anticipated in these populations. Our approach for further enhancing the XRF renal mercury detection limit has been threefold: investigations of the ideal filtration and tube voltage with a conventional tungsten anode X-ray tube, and the replacement of the existing tungsten X-ray tube with a Fluorex tube [Phys. Med. Biol. 36 (1991) 1573]. In all cases the systems were compared by Monte Carlo simulation to that reported by Börjesson et al. [Phys. Med. Biol. 40 (1995) 413].
The optimal filtration was found to be a 0.035 cm uranium filter, positioned after the polarizer. Modest improvement was achieved by increasing the tungsten tube voltage from 160 [Phys. Med. Biol. 40 (1995) 413] to 200 kV, decreasing the system detection limit by 27% for the same subject dose. It was found that the Fluorex tube did not improve the system sensitivity for a given dose rate, either when the tube was used for direct excitation or in a polarized configuration. Despite the improved performance reported here at 200 kV, detection limits remain high compared to typical levels in occupationally exposed individuals. |
---|---|
ISSN: | 0168-583X 1872-9584 |
DOI: | 10.1016/S0168-583X(03)01670-7 |