Loading…
Third order nodal finite element methods with transverse and reduced integration for elliptic problems
This paper describes a solution technique for multidimensional elliptic problems based on the use of some third order nodal finite elements and on a reduction of the basic (multidimensional) problem to a set of coupled one-dimensional problems. This solution technique, developed rather heuristically...
Saved in:
Published in: | Applied numerical mathematics 2003-08, Vol.46 (2), p.209-230 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper describes a solution technique for multidimensional elliptic problems based on the use of some third order nodal finite elements and on a reduction of the basic (multidimensional) problem to a set of coupled one-dimensional problems. This solution technique, developed rather heuristically in the framework of nuclear reactor computations in conjunction with early nodal methods, gets on a much firmer ground when applied with nodal finite elements. The first part of the paper deals with the general context of variational nodal finite element methods. The so-called “Transverse and Reduced Integration Method” is then described in the second part of the paper. Its numerical properties are illustrated by some examples. |
---|---|
ISSN: | 0168-9274 1873-5460 |
DOI: | 10.1016/S0168-9274(03)00024-2 |