Loading…
Adaptive Fuzzy C-Means clustering in process monitoring
Quite often, quality control models fail because, e.g., the mean values are changing continuously. These kinds of changes, e.g., process drifts due to seasonal fluctuations, are common in an activated sludge waste-water treatment plant in Finland. Different Fuzzy C-Means (FCM) clustering algorithms...
Saved in:
Published in: | Chemometrics and intelligent laboratory systems 1999-01, Vol.45 (1), p.23-38 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quite often, quality control models fail because, e.g., the mean values are changing continuously. These kinds of changes, e.g., process drifts due to seasonal fluctuations, are common in an activated sludge waste-water treatment plant in Finland. Different Fuzzy C-Means (FCM) clustering algorithms were tested in order to cope with these kinds of seasonal effects. Firstly, a Principal Component Analysis (PCA) model was constructed in order to visualize the data set and reduce the dimensionality of the problem. Then, score values of the PCA were used in the FCM. The cluster centers represented the different process conditions (winter and summer seasons). Different algorithms were used to update the cluster centers or to give them some flexibility. The testing of different FCM algorithms was carried out by using a separate test set. The adaptive and the flexible FCM algorithms were compared to the basic non-adaptive FCM. For both cases, modifications are proposed and a simple strategy for updating the cluster centers is given. |
---|---|
ISSN: | 0169-7439 1873-3239 |
DOI: | 10.1016/S0169-7439(98)00087-2 |