Loading…

Detachments and normal faulting in the Marche fold-and-thrust belt (central Apennines, Italy): inferences on fluid migration paths

In the outermost domains of the central Apennines fold-and-thrust belt, the structural architecture of the late Miocene–early Pliocene contractional edifice was controlled by competence contrasts in the Calcareous–Marly sequences of Mesozoic–Tertiary age, and by a different state of lithification of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geodynamics 2000-04, Vol.29 (3), p.345-369
Main Authors: Ghisetti, Francesca, Vezzani, Livio
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the outermost domains of the central Apennines fold-and-thrust belt, the structural architecture of the late Miocene–early Pliocene contractional edifice was controlled by competence contrasts in the Calcareous–Marly sequences of Mesozoic–Tertiary age, and by a different state of lithification of the rock units at the onset of deformation. Field data on relative chronology of outcrop-scale structures (cleavage, veins, faults, folds) are presented for the three largest thrust-ramp anticlines of the Marche fold-and-thrust belt: Monte Gorzano, Acquasanta and Montagna dei Fiori-Montagnone. The data show that the timing and geometry of deformation structures differ for: (1) the lower Calcareous interval of late Triassic–early Cretaceous age (LCI) bounded on top by the intermediate detachment (ID) of the Fucoidi Marls; (2) the upper Calcareous–Marly interval (UCMI) of late Cretaceous–Oligocene age; (3) the uppermost detachment zone (UDZ) of lower–middle Miocene age; (4) the topmost Messinian Flysch sequence (FS). In the UDZ early episodes of deformation are manifested by compaction of a poorly lithified sequence followed by pervasive development of layer-parallel pressure-solution cleavage. Reverse faults ramp obliquely across the stratigraphic sequence, and are coated by multiple overgrowths of calcite fibers. These structures are deformed by large, eastward-verging asymmetric folds with N–S axial trends, and are cut by late generations of reverse faults. Normal faults started to develop in the fold backlimbs during the final stages of shortening, in middle–late Pliocene times. These early normal faults were reactivated during episodes of late Pliocene–Pleistocene extensional downfaulting, and are now superposed on the compressional edifice. The UDZ is interpreted to have temporarily sealed the upward escape of fluids during the initial episodes of shortening. Pervasive interlayer flow in the poorly lithified sequence was responsible for development of broken beds and scaly fabrics, similar to those observed in accretionary prisms. Only in the latest stages of deformation did propagation of discrete faults provide an interconnected pathway for fluid migration, until the final offset of the UDZ. The structural relationships suggest that fluids trapped within the fold cores and sealed by the UDZ were finally driven upwards due to progressive disruption of the thrust belt by late normal faults of late Pliocene to Pleistocene and Holocene age. Large-scale fluid
ISSN:0264-3707
DOI:10.1016/S0264-3707(99)00057-5